Multistage Condition Monitoring System of Aircraft Gas Turbine Engine
نویسندگان
چکیده
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients’ changes are analysed. Researches of skewness and kurtosis coefficients values’ changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes’ dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values’ changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made. Keywords—aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
منابع مشابه
Stress Analysis of FGM Rotating Disk Subjected to Mechanical and Thermal Loads In Aircraft Gas Turbine Engine
Pursuant to the high usage of rotating the disk in aircraft gas turbine engine, turbo pumps in oil and gas industries, steam and gas turbines in power plants, marine gas turbine and other industrial rotary machines designing and getting under the mechanical and thermal loading casued this design and analysis to be as a special significance. These disks are subjected to mechanical and thermal lo...
متن کاملManaging Gearbox Failure
The wind industry has had a chronic problem with the reliability of its gearboxes [1], [2]. Experience has shown that premature gearbox failure is a leading maintenance cost driver that can easily consume the profit margin from a wind turbine operation. Condition monitoring is already understood to have potential to mitigate this risk by managing gearbox maintenance through the promises of reli...
متن کاملImproved Turbine Engine Hierarchical Modeling and Simulation Based on Engine Fuel Control System
Aircraft engines constitute a complex system, requiring adequate mon-itoring to ensure flight safety and timely maintenance. The best way to achieve this, is modeling the engine. Therefore, in this paper, a suitable mathematical model from engine controller design point of view, for a specific aero turbine engine is proposed by the aid of MATLAB/Simulink software. The model is capable of reduc...
متن کاملDetection of Incipient Bearing Faults in Gas Turbine Engines
Development of robust and highly sensitive algorithms for detecting incipient bearing faults in gas turbine engines will greatly benefit both military and civil aviation through improved aircraft reliability and maintainability. Techniques including advanced vibration analysis and oil debris monitoring have proven effective in laboratory and industrial settings, but factors including poor trans...
متن کاملDesign of a Comprehensive Condition Monitoring System for Gas Turbine Engines
This report contains the work of the capstone design team, assigned to design a comprehensive, cost effective, monitoring system for gas turbine engines. The main objective of the design was to produce a system capable of detecting and recording only special conditions or events. As a sample engine, the SR-30 gas turbine was used. A simulation of the engine using GSP software provided a model. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009